• Skip to primary navigation
  • Skip to main content
Surface Engineering - Wear Resistance Specialists

Wear Resistance Specialists

An Intelligent Approach
To Wear Solutions

  • Home
  • Wear Modes
    • Abrasion
    • Erosion
    • Adhesion
    • Surface Fatigue
  • Consumables
    • Product Forms
    • Nickel Alloys SPECIALLOY
    • Cobalt Alloys PRIME
    • Alloy + Tungsten Carbide CARBORIDE
    • Carbide HVOF Powders VELOCITY
    • Tungsten Carbide
    • Tungsten Powders
    • Tungsten Rods
    • Iron Based Products
    • Wire
  • Processes
    • Welded Overlay Processes
      • MIG & Submerged Arc Hardfacing
      • TIG & Oxy-Acetylene Hardfacing
      • Laser Hardfacing
      • Plasma Transfer Arc (PTA) Hardfacing
    • Spray Overlay Processes
      • HVOF Spray
      • Plasma Spray
      • Twin Wire Arc Spray (TWAS)
      • Flame Spray
      • Manual Torch Powder Welding
    • Furnace Overlay Processes
      • Infiltration
  • Equipment
    • SE PTA 350 – PTA System
    • SE TW 400 – Twin Wire Arc Spray System
    • SE-JET 5000 – HP-HVOF Spray System
    • SP1100DP TAC System
    • Manual / Puddle Spray Torch
  • Resources
    • Hardness Conversion Chart
    • Coefficient of Thermal Expansion
    • Powder Mesh Size Comparator
    • Particle Size Distribution Chart
  • About Us
  • Contact
  • Hard Facing Wires and Rods
  • Plasma Spray Powders
  • Laser Cladding Powders
  • HVOF Thermal Spray Powders
  • TIG Welding Rods and Wires
  • MIG Welding Rods and Wires
You are here: Home / Processes / Welded Overlay Processes / TIG & Oxy-Acetylene Hardfacing

TIG & Oxy-Acetylene Hardfacing

TIG stands for Tungsten Inert Gas, and is also known as Gas Tungsten Arc Welding (GTAW). It is an electrical process, where an arc is struck between the work piece and a non-consumable tungsten electrode. A metal rod or wire of filler material is held to the molten surface of the work piece, while an inert shielding gas protects the work piece and filler from impurities and oxidation.

Uses and Benefits of TIG Welding

TIG welders have a foot control for manipulating the heat of the arc. The precise control of temperature produces a precise weld. TIG can be used at lower amperages for thinner metal and exotic metals. It can be very slow with thicker metal, however.

Surface Engineering - Wear Resistance Specialists

(727) 528-7998

info@surfaceengineering.com
     

2895 46th Avenue N.   •   St. Petersburg, FL 33714   |   Fax: (727) 528-7995

© 2015-2023 Surface Engineering, all rights reserved.

Site by Industrial Webworks

MENU
  • Home
  • Wear Modes
    • Abrasion
    • Erosion
    • Adhesion
    • Surface Fatigue
  • Consumables
    • Product Forms
    • Nickel Alloys SPECIALLOY
    • Cobalt Alloys PRIME
    • Alloy + Tungsten Carbide CARBORIDE
    • Carbide HVOF Powders VELOCITY
    • Tungsten Carbide
    • Tungsten Powders
    • Tungsten Rods
    • Iron Based Products
    • Wire
  • Processes
    • Welded Overlay Processes
      • MIG & Submerged Arc Hardfacing
      • TIG & Oxy-Acetylene Hardfacing
      • Laser Hardfacing
      • Plasma Transfer Arc (PTA) Hardfacing
    • Spray Overlay Processes
      • HVOF Spray
      • Plasma Spray
      • Twin Wire Arc Spray (TWAS)
      • Flame Spray
      • Manual Torch Powder Welding
    • Furnace Overlay Processes
      • Infiltration
  • Equipment
    • SE PTA 350 – PTA System
    • SE TW 400 – Twin Wire Arc Spray System
    • SE-JET 5000 – HP-HVOF Spray System
    • SP1100DP TAC System
    • Manual / Puddle Spray Torch
  • Resources
    • Hardness Conversion Chart
    • Coefficient of Thermal Expansion
    • Powder Mesh Size Comparator
    • Particle Size Distribution Chart
  • About Us
  • Contact