• Skip to primary navigation
  • Skip to main content
Surface Engineering - Wear Resistance Specialists

Wear Resistance Specialists

An Intelligent Approach
To Wear Solutions

  • Home
  • Wear Modes
    • Abrasion
    • Erosion
    • Adhesion
    • Surface Fatigue
  • Consumables
    • Product Forms
    • Nickel Alloys SPECIALLOY
    • Cobalt Alloys PRIME
    • Alloy + Tungsten Carbide CARBORIDE
    • Carbide HVOF Powders VELOCITY
    • Tungsten Carbide
    • Tungsten Powders
    • Tungsten Rods
    • Iron Based Products
    • Wire
  • Processes
    • Welded Overlay Processes
      • MIG & Submerged Arc Hardfacing
      • TIG & Oxy-Acetylene Hardfacing
      • Laser Hardfacing
      • Plasma Transfer Arc (PTA) Hardfacing
    • Spray Overlay Processes
      • HVOF Spray
      • Plasma Spray
      • Twin Wire Arc Spray (TWAS)
      • Flame Spray
      • Manual Torch Powder Welding
    • Furnace Overlay Processes
      • Infiltration
  • Equipment
    • SE PTA 350 – PTA System
    • SE TW 400 – Twin Wire Arc Spray System
    • SE-JET 5000 – HP-HVOF Spray System
    • SP1100DP TAC System
    • Manual / Puddle Spray Torch
  • Resources
    • Hardness Conversion Chart
    • Coefficient of Thermal Expansion
    • Powder Mesh Size Comparator
    • Particle Size Distribution Chart
  • About Us
  • Contact
  • Hard Facing Wires and Rods
  • Plasma Spray Powders
  • Laser Cladding Powders
  • HVOF Thermal Spray Powders
  • TIG Welding Rods and Wires
  • MIG Welding Rods and Wires
You are here: Home / Wear Modes / Surface Fatigue

Surface Fatigue

Requires repetitive compressive stresses.

Potentially Occurs in:
Gear teeth, rolling element bearings, surface-treated parts, riveting tools, hammers, static overload.

Pitting

Pitting can occur in a number of wear processes. Pitting is the removal or displacement of material by a fatigue action that forms cavities on a surface. Pitting, as part of surface fatigue, frequently occurs in rolling element bearings, gears, worm wheels and cam paths.

Spalling

Spalling arises from the same mechanisms as pitting, and in this form of wear, particles fracture from a surface in the form of metal flakes. This is the result of surface fatigue, and it occurs in the same types of systems. Occasionally, wear surfaces that are subject to rolling elements are electroplated for wear resistance. Such systems are very prone to spalling.

Impact

Impact wear, repetitive impacting of two solid surfaces, causes material damage and removal. A simple example of impact wear is damage that occurs on the head of a high-speed riveting hammer. The hammer drastically deforms the rivet head, and there is no concern for the wear that occurs on the rivet, but the hammer suffers material attrition that eventually necessitates its replacement.

Brinelling

Brinelling is the wear term used to describe surface damage of solids by repeated local impact or by static overload. The origin of this term is from the resemblance of this form of damage to a hardness indentation on a Brinell hardness test

Surface Engineering - Wear Resistance Specialists

(727) 528-7998

info@surfaceengineering.com
     

2895 46th Avenue N.   •   St. Petersburg, FL 33714   |   Fax: (727) 528-7995

© 2015-2023 Surface Engineering, all rights reserved.

Site by Industrial Webworks

MENU
  • Home
  • Wear Modes
    • Abrasion
    • Erosion
    • Adhesion
    • Surface Fatigue
  • Consumables
    • Product Forms
    • Nickel Alloys SPECIALLOY
    • Cobalt Alloys PRIME
    • Alloy + Tungsten Carbide CARBORIDE
    • Carbide HVOF Powders VELOCITY
    • Tungsten Carbide
    • Tungsten Powders
    • Tungsten Rods
    • Iron Based Products
    • Wire
  • Processes
    • Welded Overlay Processes
      • MIG & Submerged Arc Hardfacing
      • TIG & Oxy-Acetylene Hardfacing
      • Laser Hardfacing
      • Plasma Transfer Arc (PTA) Hardfacing
    • Spray Overlay Processes
      • HVOF Spray
      • Plasma Spray
      • Twin Wire Arc Spray (TWAS)
      • Flame Spray
      • Manual Torch Powder Welding
    • Furnace Overlay Processes
      • Infiltration
  • Equipment
    • SE PTA 350 – PTA System
    • SE TW 400 – Twin Wire Arc Spray System
    • SE-JET 5000 – HP-HVOF Spray System
    • SP1100DP TAC System
    • Manual / Puddle Spray Torch
  • Resources
    • Hardness Conversion Chart
    • Coefficient of Thermal Expansion
    • Powder Mesh Size Comparator
    • Particle Size Distribution Chart
  • About Us
  • Contact